ep - t h / 04 12 03 4 v 2 1 A ug 2 00 5 The symmetries of the Dirac – Pauli equation in two and three dimensions

نویسنده

  • J. Sánchez-Guillén
چکیده

We calculate all symmetries of the Dirac-Pauli equation in twodimensional and three-dimensional Euclidean space. Further, we use our results for an investigation of the issue of zero mode degeneracy. We construct explicitly a class of multiple zero modes with their gauge potentials. email: [email protected] email: [email protected]

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ar X iv : h ep - t h / 04 12 03 4 v 2 1 A ug 2 00 5 The symmetries of the Dirac – Pauli equation in two and three dimensions

We calculate all symmetries of the Dirac-Pauli equation in twodimensional and three-dimensional Euclidean space. Further, we use our results for an investigation of the issue of zero mode degeneracy. We construct explicitly a class of multiple zero modes with their gauge potentials. email: [email protected] email: [email protected]

متن کامل

ar X iv : h ep - t h / 02 02 04 0 v 2 1 M ar 2 00 2 Anomalies in Noncommutative Dipole Field

We study chiral symmetries of fermionic non commutative dipole theories. By using Fujikawa's approach we obtain explicit expressions of the anomalies for Dirac and chiral fermions in 2 and 4 dimensions.

متن کامل

ar X iv : h ep - t h / 04 08 19 3 v 1 2 5 A ug 2 00 4 Snyder noncommutative space - time from two - time physics

We show that the two-time physics model leads to a mechanical system with Dirac brackets consistent with the Snyder noncommutative space. An Euclidean version of this space is also obtained and it is shown that both spaces have a dual system describing a particle in a curved space-time. PACS numbers: 11.10.Nx, 02.40.Gh, 45.20.-d e-mail: [email protected] e-mail: [email protected] 1

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005